Monte-Carlo Tree Search for Efficient Visually Guided Rearrangement Planning
نویسندگان
چکیده
منابع مشابه
Guided Monte Carlo Tree Search for Planning in Learned Environments
Monte Carlo tree search (MCTS) is a sampling and simulation based technique for searching in large search spaces containing both decision nodes and probabilistic events. This technique has recently become popular due to its successful application to games, e.g. Poker Van den Broeck et al. (2009) and Go Coulom (2006); Chaslot et al. (2006); Gelly and Silver (2012)). Such games have known rules a...
متن کاملMonte-Carlo Tree Search
representation of the game. It was programmed in LISP. Further use of abstraction was also studied by Friedenbach (1980). The combination of search, heuristics, and expert systems led to the best programs in the eighties. At the end of the eighties a new type of Go programs emerged. These programs made an intensive use of pattern recognition. This approach was discussed in detail by Boon (1990)...
متن کاملEfficient Sampling Method for Monte Carlo Tree Search Problem
We consider Monte Carlo tree search problem, a variant of Min-Max tree search problem where the score of each leaf is the expectation of some Bernoulli variables and not explicitly given but can be estimated through (random) playouts. The goal of this problem is, given a game tree and an oracle that returns an outcome of a playout, to find a child node of the root which attains an approximate m...
متن کاملA Local Monte Carlo Tree Search Approach in Deterministic Planning
Much recent work in satisficing planning has aimed at striking a balance between coverage solving as many problems as possible and plan quality. Current planners achieve near perfect coverage on the latest IPC benchmarks. It is therefore natural to investigate their scaling behavior on more difficult instances. Among state of the art planners, LAMA (Richter, Helmert, and Westphal 2008) is able ...
متن کاملInterplanetary Trajectory Planning with Monte Carlo Tree Search
Planning an interplanetary trajectory is a very complex task, traditionally accomplished by domain experts using computer-aided design tools. Recent advances in trajectory optimization allow automation of part of the trajectory design but have yet to provide an efficient way to select promising planetary encounter sequences. In this work, we present a heuristic-free approach to automated trajec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Robotics and Automation Letters
سال: 2020
ISSN: 2377-3766,2377-3774
DOI: 10.1109/lra.2020.2980984